INTERSECTION OF ASYMPTOTIC SURFACES OF THE PERTURBED EULER-POINSOT PROBLEM*

S.A. DOVBYSH

Abstract

The mutual disposition of the asymptotic surfaces (separatrices) of perturbed permanent rotations is considered in the problem of the motion of an asymmetric heavy rigid body with a fixed point in a weak gravitational field. It is shown that, for small values of the poincaré parameter, there are always no paired separatrices, except in the, Hess-Appelroth case. As the Poincaré parameter tends to zero, it is shown that an infinite number of bifurcations of the birth and disappearance of heteroclinic solutions, passing close to the three undisturbed separatrices, can be observed.

1. The problem. Let U be a domain in the real plane $\mathbf{R}^{2}\left\{x^{1}, x^{2}\right\}$, and let μ be a small parameter: $|\mu|<\varepsilon$. We consider the system

$$
\begin{align*}
& \frac{d x^{1}}{d \varphi}=\frac{\partial H}{\partial x^{2}}, \quad \frac{d x^{2}}{d \varphi}=-\frac{\partial H}{\partial x^{1}} \tag{1.1}\\
& \left(H\left(x^{1}, x^{2}, \varphi, \mu\right)=H_{0}\left(x^{1}, x^{2}\right)+\mu H_{1}\left(x^{1}, x^{2}, \varphi\right)+\ldots\right)
\end{align*}
$$

with Hamiltonian which is 2π-periodic with respect to time φ and analytic in the direct product

$$
U\left\{x^{1}, x^{2}\right\} \times S^{1}\{\varphi \bmod 2 \pi\} \times(-\varepsilon, \varepsilon)
$$

Let the unperturbed Hamiltonian of the system

$$
\begin{equation*}
\frac{d x^{1}}{d \varphi}=\frac{\partial H_{0}}{\partial x^{2}}, \quad \frac{d x^{2}}{d \varphi}=-\frac{\partial H_{0}}{\partial x^{1}} \tag{1.2}
\end{equation*}
$$

have fixed hyperbolic points $x_{1}, x_{2}, x_{3} \triangleq U$ (the points x_{1} and x_{3} may possibly coincide), joined by two doubly asymptotic solutions $x_{1}{ }^{*}(\varphi), x_{2}{ }^{*}(\varphi)$, lying entirely in the domain U :

$$
\lim _{\varphi \rightarrow-\infty} x_{k}^{*}(\varphi)=x_{k}, \quad \lim _{\varphi \rightarrow+\infty} x_{k}^{*}(\varphi)=x_{k+1} ; \quad k=1,2
$$

The solutions, asymptotic as $\varphi \rightarrow-\infty$ or $\varphi \rightarrow+\infty$, to a given periodic hyperbolic solution, form two invariant surfaces, called respectively the outgoing and incoming separatrices.

System (1.2) has two pairs of coincident (twinned) asymptotic surfaces of hyperbolic periodic solutions. They are the outgoing separatrix $\Gamma_{1}{ }^{\prime \prime}$ of the solution $x \equiv x_{1}$ and the incoming separatrix Γ_{1}^{\prime} of the solution $x \equiv x_{2}$ on the one hand, and the outgoing separatrix Γ_{2}^{\prime} of the solution $x \equiv x_{2}$ and the incoming separatrix $\Gamma_{2}^{\prime \prime}$ of the solution $x \equiv x_{3}$ on the other.

For small $\mu \neq 0$ the 2π-periodic hyperbolic solutions $x \equiv x_{i}(i=1,2,3)$ and their asymptotic surfaces fo not vanish, but are merely slightly deformed. However, as poincaré discovered, in the general case for small values of the parameter $\mu \neq 0$ the separatrices cease to be twinned (they split up).

Simple necessary and sufficient conditions have been obtained /l/ for the splitting, intersection, and non-intersection, of perturbed asymptotic surfaces. These results refer, however, to the mutual disposition of the perturbed separatrices in a domain which contains part of the unperturbed twinned separatrix and does not contain the unperturbed periodic solutions.

Assume that, for small $\mu>0$, the solutions $x \equiv x_{i}$ transform into the solutions $x=$ $x_{i}(\varphi)$, and that the perturbed separatrices $\Gamma_{1}^{\prime}, \Gamma_{1}{ }^{\prime \prime}$ and $\Gamma_{2}{ }^{\prime}, \Gamma_{2}{ }^{\prime \prime}$ split up and do not intersect,

Fig.l
while $\Gamma_{k}{ }^{\prime \prime}$ lie on one side of Γ_{k}^{\prime} (the section by the plane $\varphi=$ const is shown in Fig.l). We find below simple sufficient conditions for non-coincidence and intersection of the separatrices $\Gamma_{k}^{\prime \prime}$ for all small $\mu>0$. Our results are used to study the asymptotic surfaces of the perturbed EulerPoinsot problem.
2. Normal coordinates in the neighbourhood of a hyperbolic periodic solution. We will use the "uniform version" of Mozer's theorem /1/: there exists the change of variables

$$
\begin{aligned}
& x=\Phi(\xi, \eta, \varphi, \mu)=\Phi_{0}(\xi, \eta)+\mu \Phi_{1}(\xi, \eta, \varphi)+\ldots \\
& \partial\left(x^{1}, x^{2}\right) / \partial(\xi, \eta) \equiv 1, \Phi_{0}(0,0)=x_{2}
\end{aligned}
$$

real-analytic with respect to ξ, η, φ, μ for sufficiently small $|\xi|,|\eta|,|\mu|$, and 2π-periodic in φ, transforming system (l.1) to the normal form (the point denotes the derivative with respect to ω)

$$
\begin{align*}
& d \xi / d \varphi=\partial F / \partial \eta, \quad d \eta / d \varphi=-\partial F / \partial \xi \tag{2.1}\\
& \omega=\xi \eta, F(\omega, \mu)=F_{0}(\omega)+\mu F_{1}(\omega)+\ldots, F_{0}^{*}(0)=\Lambda>0
\end{align*}
$$

It can be assumed that the outgoing separatrix $\eta=0, \xi>0$ coincides with Γ_{2}^{\prime}, and the incoming separatrix $\xi=0, \eta>0$, with Γ_{1}.

Using the results of $/ 1 /$, we can obtain the equation for the separatrix $\Gamma_{2}{ }^{\prime \prime}$ close to $\Gamma_{2}{ }^{\prime}$

$$
\begin{align*}
& \eta=-\mu J_{2}\left(\varphi-\varphi_{2}\right) /(\Lambda \xi)+\mu^{2} R_{2}(\xi, \varphi, \mu) \tag{2.2}\\
& J_{2}(\varphi)=\int_{-\infty}^{+\infty}\left\{H_{0}, H_{1}\right\}\left(x_{2}^{*}(\tau-\varphi), \tau\right) d \tau \\
& x_{2}^{*}\left(\tau+\varphi_{2}\right)=\Phi_{0}(\xi \exp (\Lambda \tau), 0) \tag{2.3}
\end{align*}
$$

Here and below, R_{1}, \ldots, R_{7} are analytic functions, and C_{1}, \ldots, C_{8} are constants; condition (2.3) serves to define φ_{2}.

The similar equation for $\Gamma_{1}{ }^{\prime \prime}$ close to Γ_{1}^{\prime} is

$$
\begin{align*}
& \xi=\mu J_{1}\left(\varphi-\varphi_{1}\right) /(\Lambda \eta)-\mid-\mu^{2} R_{1}(\eta, \varphi, \mu) \tag{2.4}\\
& J_{1}(\varphi)=\int_{-\infty}^{+\infty}\left\{H_{0}, H_{1}\right\}\left(x_{1}^{*}(\tau-\varphi), \tau\right) d \tau \\
& x_{1}^{*}\left(\tau+\varphi_{1}\right)=\Phi_{0}(0, \eta \exp (-\Lambda \tau)) \tag{2.5}
\end{align*}
$$

Let $\xi^{\prime}, \eta^{\prime}, \varphi$ be the coordinates in the neighbourhood of the perturbed periodic solution $x=x_{1}(\varphi)$, similar to coordinates ξ, η, φ, and let Λ^{\prime} be a quantity similar to Λ. To be specific, let $\xi^{\prime}, \eta^{\prime}$ be chosen in the way shown in Fig.l. (The case shown in fig.l can only hold if $J_{1}(\varphi) \geqslant 0, J_{2}(\varphi) \leqslant 0$.)

By composing the Birkhoff transformation with powers of the mapping over the period we can continue the coordinates ξ, η and $\xi^{\prime}, \eta^{\prime}$ in a neighbourhood V_{1} of the separatrices Γ_{1}, $\Gamma_{1}^{\prime \prime}$, which does not contain the perturbed solutions $x=x_{k}(\varphi)$. In the domain V_{1} it is convenient to transform from coordinates ξ, η and $\xi^{\prime}, \eta^{\prime}$ to coordinates $\omega_{3} \varphi_{1}$ and ω^{\prime}, $\varphi_{2}{ }^{\prime}$, where $\omega=\xi \eta, \omega^{\prime}=\xi^{\prime} \eta^{\prime}$, and φ_{2}^{\prime} is expressible in terms of ξ^{\prime} by an expression exactly similar to (2.3). Using (2.2)-(2.5), we find expressions for transforming from one coordinate system to the other in the domain V_{1} :

$$
\begin{align*}
\Lambda \omega & =\Lambda^{\prime} \omega^{\prime}+\mu J_{1}\left(\varphi-\varphi_{2}^{\prime}\right)+R_{3}\left(\omega^{\prime}, \varphi, \varphi_{2}^{\prime}, \mu\right) \tag{2.6}\\
\varphi_{1} & =\varphi_{2}^{\prime}+R_{4}\left(\omega^{\prime}, \varphi, \varphi_{2}^{\prime}, \mu\right)
\end{align*}
$$

where the series expansion of R_{3} in ω^{\prime}, μ starts with not lower than quadratic terms, and the expansion of R_{4} with not lower than linear terms.

Notice that: 1) $\omega, \omega^{\prime}, J_{1}\left(\varphi-\varphi_{2}{ }^{\prime}\right)$ is independent of the choice of coordinates ξ, η and $\xi^{\prime}, \eta^{\prime}$, and depends only on the point of the domain V_{1} and the parameter μ; 2) Eqs. (2.2), (2.4) are obtained from (2.6) if we put $\omega=0$ or $\omega^{\prime}=0$.

We can express φ_{1}, φ_{2} in terms of ξ, η by

$$
\varphi_{1}=C_{1}-\Lambda^{-1} \ln \eta, \varphi_{2}=\Lambda^{-1} \ln \xi+C_{2}
$$

which follow from Eqs. (2.3) and (2.5).
In the neighbourhood V_{1} of the separatrices $\Gamma_{1}{ }^{\prime}, \Gamma_{1}{ }^{\prime \prime}$ we shall use coordinates $\omega^{\prime}, \varphi_{2}{ }^{\prime}, \varphi$, and in the similar neighbourhood V_{2} of the separatrices $\Gamma_{2}{ }^{\prime}, \Gamma_{2}{ }^{n}$, the coordinates, $\omega, \varphi_{2}, \varphi$. Let $\left(\omega, \varphi_{2}{ }^{\prime}, \varphi\right)$ be the coordinates of a point close to separatrices $\Gamma_{1}{ }^{\prime}, \Gamma_{1}{ }^{\text {m }}$ (inside the domain V_{1}), where $\omega^{\prime}=\mu J^{\prime}$, where $J^{\prime}=O(1)$. Then in ($\omega, \varphi_{1}, \varphi$) coordinates this point becomes

$$
\begin{align*}
& \omega=\mu J, \varphi_{1}=\varphi_{2}^{\prime}+O(\mu) \tag{2.7}\\
& \Lambda J=\Lambda^{\prime} J^{\prime}+J_{1}\left(\varphi-\varphi_{2}^{\prime}\right)+O(\mu)
\end{align*}
$$

If $J \geqslant C_{3}>0$ (all the expressions are similar for the case $J \leqslant C_{3}<0$), then, after a time $\Delta \varphi=2 \pi n$ (n iterations of the Poincaré mapping), where $n=\left[-(2 \pi \Lambda)^{-1} \ln \mu\right]$, the point $(\xi, \eta, \varphi) \sim\left(\omega, \varphi_{2}{ }^{\prime}, \varphi\right)$ becomes the point $\left(\xi_{1}, \eta_{11} \varphi+\Delta \varphi\right) \sim\left(\omega, \varphi_{2}, \varphi\right)$, close to $\Gamma_{2}{ }^{\prime \prime}$ (inside the domain V_{2}), where

$$
\begin{align*}
& \xi_{1}=\xi \exp (2 \pi w)=O(1), \eta_{1}=O(\mu) \tag{2,8}\\
& w=F^{*}=\Lambda+\mu \alpha+\mu^{2} R_{5}(J, \mu) \\
& \alpha=F_{0}^{\prime *}(0) J+F_{1}^{\cdot}(0) \\
& \varphi_{2}=\Lambda^{-1} \ln \xi_{1}+C_{2}=\Lambda^{-1} \ln \omega-\Lambda^{-1} \ln \eta+C_{2}+2 \pi n+2 \pi n \Lambda^{-1} \mu \alpha+ \\
& 2 \pi n \Lambda^{-1} \mu^{2} R_{5}(J, \mu)=\varphi_{1}+C_{4}+\Lambda^{-1} \ln \mu+2 \pi n+2 \pi n \Lambda^{-1} \mu \alpha+\Lambda^{-1} \ln J+2 \pi n \Lambda^{-1} \mu^{2} R_{5}(J, \mu)
\end{align*}
$$

3. Non-coincidence of the separatrices $\Gamma_{1}{ }^{n}, \Gamma_{2}{ }^{\prime \prime}$.

Theorem 1. The separatrices $\Gamma_{1}{ }^{\prime \prime}, \Gamma_{2}{ }^{\prime \prime}$ do not coincide for any sufficiently small $\mu>0$ if at least one of the following conditions holds:

1. $\quad \frac{d}{d \varphi} \ln J_{1}(\varphi) \geqslant \Lambda \quad$ or $\frac{d}{d \varphi} \ln \left(-J_{2}(\varphi)\right) \leqslant-\Lambda$
for any φ (this is the case, in particular, if $J_{1}(\varphi)=0$ or $J_{2}(\varphi)=0$ for some φ).
2. The domains of variation of the functions J_{1} and $-J_{2}$ are not the same.
3. One of functions J_{1}, J_{2} has no branching points in the complex plane, while the other is not equal to a constant and has a zero or pole on its Riemann surface. (These conditions are satisfied, e.g., by real trigonometric polynomials.)
4. $F_{8}{ }^{\prime \prime}(0) \neq 0$ and at least one of functions J_{i} is not constant.

Some other criteria can also be obtained for non-coincidence and intersection of the separatrices $\Gamma_{1}{ }^{\prime \prime}, \Gamma_{2}{ }^{\prime \prime}$.

Proof. Let us find the parametric equations for the separatrix $\Gamma_{1}{ }^{n}$ close to $\Gamma_{2}{ }^{\prime}, \Gamma_{2}{ }^{\prime \prime}$. From (2.4) and (2.8) we have

$$
\begin{align*}
& \psi_{2}=\psi_{1}-C_{4}-\Lambda^{-1} \ln \mu-2 \pi n-\Lambda^{-1} \ln \Lambda^{-1}- \tag{3.1}\\
& \Lambda^{-1} \ln J_{1}\left(\psi_{1}\right)+O(\mu \ln \mu) \\
& \omega=\Lambda^{-1} \mu J_{1}\left(\psi_{1}\right)+O\left(\mu^{2}\right), \psi_{k}=\varphi-\varphi_{k}
\end{align*}
$$

The term $O(\mu \ln \mu)$ on the right-hand side of (3.1) has the form

$$
\begin{aligned}
& -2 \pi n \Lambda^{-1} \mu \alpha\left(\varphi-\varphi_{1}\right)+\mu R_{6}\left(\varphi, \varphi_{1}, \mu\right)+ \\
& \quad n \mu^{2} R_{7}\left(\varphi, \varphi_{1}, \mu\right) \\
& \alpha(\psi)=F_{1}^{\prime}(0)+\Lambda^{-1} F_{0}{ }^{\prime \prime}(0) J_{1}(\psi)
\end{aligned}
$$

If, for some $\mu>0$, the separatrices $\Gamma_{1}{ }^{n}, \Gamma_{2}{ }^{n}$ coincide, then φ_{2} with fixed φ is a single-valued smooth function of φ_{1}; similarly, φ_{1} is a smooth function of φ_{2}. The condition $d \varphi_{2} / d \varphi_{1} \geqslant \delta>0$ must therefore be satisfied. Calculation gives

$$
d \varphi_{2} / d \varphi_{1}=1-\Lambda^{-1} d \ln J_{1}\left(\varphi-\varphi_{1}\right) / d \varphi-2 \pi n \Lambda^{-1} \mu d \alpha\left(\varphi-\varphi_{1}\right) / d \varphi+O(\mu)
$$

Hence criterion 1° follows.
The curve cut out by the plane $\varphi=$ const on the separatrix $\Gamma_{i}{ }^{n}$ is the image under a power of the poincare mapping of the piece of it lying close to separtrix $x_{i}{ }^{*}$. From (2.2), (2.4) we have

$$
\begin{equation*}
\left|J_{1}\left(\varphi-\varphi_{1}\right)+J_{2}\left(\varphi-\varphi_{2}\right)\right| \leqslant C_{5}|\mu| \tag{3.2}
\end{equation*}
$$

Hence criterion 2° follows at once.
Now let $F_{0}{ }^{\prime \prime}(0) \neq 0, d J_{1} / d \psi \neq 0$ at the point $\psi=\psi_{0}$. Then, $(d \alpha / d \psi)_{\psi=\psi_{0}} \neq 0$, and it can be shown that inequality (3.2) must be violated for smali $\mu>0$. Hence criterion 4° follows.

Let p and q be the canonical coordinates in the neighbourhood of x_{2} at which the Hamiltonian

$$
H_{0}=\lambda p q+\sum_{\alpha+\beta \geqslant 3} H_{\alpha \beta} p^{\alpha} q^{\beta} .
$$

On performing one step of the Birkhoff transformation, we can obtain the expression

$$
1 / 2 F_{0}{ }^{\prime \prime}(0)=-3 \lambda^{-1}\left(H_{03} H_{30}+H_{12} H_{21}\right)+H_{22} .
$$

If there exist arbitrarily small positive values of μ at which the separatrices $\Gamma_{1}{ }^{\prime \prime}, \Gamma_{2}{ }^{\prime \prime}$ are twinned, then, on passing to the limit as $\mu-0$ in the appropriate sequence convergent to zero, we obtain $-J_{2}\left(\psi_{2}\right)=J_{1}\left(\psi_{1}\right)$, where

$$
\psi_{2}=\psi_{1}+C_{6}-\Lambda^{-1} \ln J_{1}\left(\psi_{1}\right) .
$$

We can similarly express ψ_{1} in terms of ψ_{2} :

$$
\psi_{1}=\psi_{2}+C_{7}+\Lambda^{-1} \ln \left(-J_{2}\left(\psi_{2}\right)\right) .
$$

Let $f(\psi)=J_{1}(\psi), g(\psi)=-J_{2}(\psi)$, and let f have a zero w of order $m>0$ on its Riemann surface, which lies above $z_{0} \in C$ (in other cases, all the arguments are similar). Then w has a neighbourhood on the Riemann surface which projects one-to-one into the neighbourhood U of point z_{0} in the complex plane. Hence we need only consider in the set U one branch of the function f, which is connected with the function g by the equation

$$
f(z)=g(z+\chi), \quad \chi=C_{6}-\Lambda^{-1} \ln f(z)
$$

If z is close to z_{0}, then $\operatorname{Re} \chi$ is close to $+\infty$.
There is a C_{8} such that, for u that satisfies the condition $\operatorname{Re} u>C_{8}$, there is a solution $z \in U$ of the equation $z+\chi=u$.

For, we can rewrite the last equation as

$$
\begin{equation*}
f(z) \exp (-\Lambda z)=\exp \left(-\Lambda\left(u-C_{6}\right)\right) \tag{3.3}
\end{equation*}
$$

By the theorem on local inversion of analytic functions, there exists $\rho>0$ such that, if $\left|\exp \left(-\Lambda\left(u-C_{6}\right)\right)\right|<\rho$, then Eq. (3.3) has a solution $z \in U$ which tends to z_{0} as $\operatorname{Re} u \rightarrow+$ ∞. Thus, as $\operatorname{Re} u \rightarrow+\infty g(u)=f(z) \rightarrow f\left(z_{0}\right)=0$. Since $g(u)$ is 2π-periodic, $g \equiv 0$. We have a contradiction. Criterion 3 is proved.
4. Application to the perturbed Euler-Poinsot case. We consider the motion of an asymmetric rigid heavy body about a fixed point. Let $a<b<c$ be the reciprocals of the principal moments of inertia of the body; the Poincare parameter μ is the product of the weight of the body and the distance of the centre of gravity to the point of suspension, X_{0}, Y_{0}, Z_{0} are the direction cosines of the radius vector of the centre of gravity in the principal axes of inertia, connected with the fixed point, and H is the constant area.

If the total energy level $h>0$ is fixed, we can pass by means of isoenergetic reduction to the reduced system (1.1) $/ 1 /$, where $x^{1}=l, x^{2}=L, \varphi=g$ are the Andoyer-Deprit canonical variables. With $\mu=0$ system (1.1) has the fixed points

$$
\gamma_{1}:(L=0, l=\pi \bmod 2 \pi), \gamma_{2}:(L=0, l=0 \bmod 2 \pi)
$$

connected by the doubly asymptotic solutions. Study of the splitting of the separatrices with $\mu \neq 0$ was started in $/ 2 /$ (in the special case $X_{0}=Z_{0}=0, Y_{0} \neq 0$), and was completed in $/ 1 /$.

It was found that, with certain values of the problem parameters, the separatrices split up and do not intersect. Nevertheless, Ziglin showed, by applying to a sequence mapping given in a domain of the ring ($L ; l \bmod 2 \pi$), Mozer's theorem on invariant curves, and using simple arguments, connected with the presence of an invariant area, that the following can easily be proved: for all values of the problem parameters, except for the Hess-Appelroth case, for sufficiently small $\mu \neq 0$, there are at least two double asymptotic (homoclinic) solutions for each disturbed periodic solution γ_{i}. In the Hess-Appelroth case, there are no such solutions.

It has remained unclear whether some of these homoclinic solutions can lie on twinned (for certain small $\mu \neq 0$) asymptotic surfaces. This can only occur in the situation studied in Sect.3. In this problem, the improper integrals $J_{i}(\varphi)$, taken along unperturbed double asymptotic solutions, are trigonometric non-constant polynomials /1/. Hence, by criterion 3°, the asymptotic surfaces do not coincide for any small $\mu \neq 0$.

Take three doubly asymptotic solutions $x_{i}{ }^{*}(\varphi), i=1,2,3$ (Fig.2), chosen so that the points $x_{i}{ }^{*}(0)$ are equidistant from the fixed points γ_{i}. Let $J_{i}(\varphi)$ be the corresponding improper integrals. Using the results of $/ 1 /$, we find after calculations that

$$
\begin{aligned}
& J_{j}(\varphi)=(-1)^{j} a_{0} Y_{0}+a_{y} Y_{0} \cos \varphi-\left((-1)^{j} a_{x} X_{0}+a_{z} Z_{0}\right) \sin \varphi, \\
& j=2,3 ; \\
& a_{0}=H / h, a_{x}-k \sqrt{c-b} / \operatorname{sh}^{1 / 2 \pi \beta} \\
& a_{y}=k \sqrt{c-a} / \operatorname{ch}^{1 / 2} \pi \beta, \quad a_{x}=k \sqrt{b-a} / \operatorname{sh}^{1 / 2} \pi \beta \\
& k=\pi G_{0}-1\left[1-\left(H / G_{0}\right)^{2}\right]^{1 / 2}[(b-a)(c-b)(c-a)]^{-1 / 2} \\
& \left.h=1 / 2 b G_{0}^{2}, \Lambda=\Lambda^{\prime}=b^{-1} 1(b-a)(c-b)\right]^{1 / 2}=\beta^{-1}
\end{aligned}
$$

(h is a fixed energy constant). The integral $J_{1}(\varphi)$ is obtained from $J_{2}(\varphi)$ by the replacement $X_{0} \rightarrow-X_{0}, Y_{0} \rightarrow-Y_{0}$. From the inequality $a^{-1}<b^{-1}+c^{-1}$ for the moments of inertia, we have $\Lambda<1$.

We denote the problem parameters by

$$
p r=\left(a, b, c, X_{0}, Y_{0}, Z_{0}, H / G_{0}\right)
$$

Theorem 2. There exist domains $S_{i}(i=1,2,3)$ in the parameter space such that: 1) with $p r \in S_{1} \cup S_{2} \cup S_{3}$ and all small $\mu>0$, the perturbed separatrices split up, do not intersect, and are located as shown in Fig. 3 ;
2) for $p r \in S_{1}$ and all small $\mu>0$, the outgoing separatrix Γ_{1} and the incoming separatrix Γ_{2} do not intersect close to the unperturbed separatrices $x_{i}{ }^{*}$;
3) for $p r \in S_{2}$ and all small $\mu>0, \Gamma_{1}$ and Γ_{2} intersect close to the unperturbed separatrices x_{i}^{*};
4) for $p r E S_{3}$ there are sequences of positive numbers $\mu_{n}^{+} \rightarrow 0, \mu_{n}^{-} \rightarrow 0, n \rightarrow \infty$, such that, with $\mu=\mu_{n}^{-} \Gamma_{1}$ and Γ_{2} intersect close to x_{i}^{*}, and with $\mu=\mu_{n}^{+}$they do not intersect.

Fig. 2

Fig. 3

In short, for $p r \in S_{3}$, as the positive μ tends to zero, we observe an infinite number of bifurcations of the birth and disappearance of heteroclinic solutions, passing close to $x_{i}{ }^{*}$. This is also true for $p r \in S_{2}$, though in this case these heteroclinic solutions do not all vanish for every small $\mu>0$.

Proof. The picture of the separatrices in Fig. 3 holds if $J_{1}(\varphi)>0, J_{2}(\varphi)<0, J_{3}(\varphi)>0$ for all φ. In the neighbourhood of the perturbed periodic solution γ_{i} we choose normal coordinates ξ_{i}, η_{i}, and take $\omega_{i}=\xi_{i} \eta_{i}$. In the neighbourhood of $x_{i}{ }^{*}$ we link with $\left|\xi_{i m o d a}\right|$ the phase φ_{i} in accordance with relations (2.3). Let $\psi_{i}=\varphi-\varphi_{i}$.

We use expressions (2.7), (2.8), (3.1). Close to $x_{2}{ }^{*}$ the separatrix Γ_{1} is given by the parametric equations

$$
\begin{align*}
& \psi_{2}=\psi_{1}-t-\Lambda^{-1} \ln J_{1}\left(\psi_{1}\right)+O(\mu \ln \mu) \tag{4.1}\\
& \left(t=C_{4}+\Lambda^{-1} \ln \mu+2 \pi n+\Lambda^{-1} \ln \Lambda^{-1}\right)
\end{align*}
$$

where $\quad \omega_{2}=\Lambda^{-1} \mu J_{1}\left(\psi_{1}\right)+O\left(\mu^{2}\right)$, or

$$
\begin{equation*}
\omega_{3}=\Lambda^{-1} \mu\left(J_{1}\left(\psi_{1}\right)+J_{2}\left(\psi_{2}\right)\right)+O\left(\mu^{2}\right) \tag{4.2}
\end{equation*}
$$

The parts of Γ_{1}, where $-\left(J_{1}\left(\psi_{1}\right)+J_{2}\left(\psi_{2}\right)\right) \geqslant \delta>0$, are located close to $x_{2}{ }^{*}$, and in time $2 \pi n$ transform into parts located close to $x_{3}{ }^{*}$ and given by Eqs.(4.2) and

$$
\begin{equation*}
\psi_{3}=\psi_{2}-t-\Lambda^{-1} \ln \left(-J_{1}\left(\psi_{1}\right)-J_{2}\left(\psi_{2}\right)\right)+O(\mu \ln \mu) \tag{4.3}
\end{equation*}
$$

(by the symmetry of the unperturbed problem, the constant C_{4} is the same in both equations). Close to $x_{2}{ }^{*}$ the separatrix Γ_{2} is given by the equation

$$
\omega_{3}=-\Lambda^{-1} \mu J_{3}\left(\psi_{3}\right)+O\left(\mu^{2}\right)
$$

By choosing suitable a, b, c, H, G_{0}, we can give any pre-assigned values to the quantities $a_{0} \quad a_{y} \neq 0,0<\Lambda<1$. Let $X_{0}=Z_{0}=0, \quad Y_{0}=1$.

If $J \equiv J_{1}\left(\psi_{1}\right)+J_{2}\left(\psi_{2}\right)+J_{3}\left(\psi_{3}\right)>0$ for any ψ_{i}, then the separatrices Γ_{1}, Γ_{2} do not intersect close to $x_{3}{ }^{*}$ for small $\mu>0$, or therefore, close to $x_{1}{ }^{*}, x_{2}{ }^{*}$. For this, it suffices to require that $3\left|a_{y}\right|<\left|a_{0}\right|$.

The piece of Γ_{2} close to x_{2}^{*} is given by the equations

$$
\begin{align*}
& \omega_{2}=-\Lambda^{-1} \mu\left(J_{3}\left(\psi_{3}\right)+J_{2}\left(\psi_{2}\right)\right)+O\left(\mu^{2}\right) \tag{4.4}\\
& \psi_{2}=\psi_{3}+t+\Lambda^{-1} \ln J_{3}\left(\psi_{3}\right)+O(\mu \ln \mu)
\end{align*}
$$

We fix a_{0}, a_{y}, ψ_{2}. In any interval in $S^{1}=\mathbf{R} /(2 \pi Z)$ for sufficiently large Λ^{-1}, there exists a solution ψ_{1} of Eq. (4.1) $\bmod 2 \pi$ and a solution ψ_{3} of Eq. (4.4) mod 2π (since functions J_{1}, J_{3} are not locally constant). It can be seen that the following holds: for large Λ^{-1}, in the neighbourhood of separatrix $x_{2}{ }^{*}$ which does not contain solutions $\gamma_{i s}$ there exist branches of separatrices Γ_{1} and $\Gamma_{2}, o(\mu)$-close to the surfaces given by the equations

$$
\omega_{2}=\Lambda^{-1} \mu J_{1}\left(\psi_{1}\right), \quad \omega_{2}=-\Lambda^{-1} \mu\left(J_{2}\left(\varphi-\varphi_{2}\right)+J_{3}\left(\psi_{3}\right)\right)
$$

where ψ_{1}, ψ_{3} are previously chosen numbers. Hence, if there are numbers $\psi_{1}, \psi_{3 *}$ such that J changes sign as ψ_{2} varies, then, for sufficiently large Λ^{-1} and small $\mu>0(0<\mu<\mu(p r))$, the separatrices Γ_{1}, Γ_{2} have an infinitely large number of distinct lines of intersection, i.e., heteroclinic solutions. Hence there exists $p r \in S_{2}$.

We now fix Λ and specify a positive $\varepsilon<1 / 2$, while we take $\delta=\left|a_{y} / a_{0}\right|$ sufficientiy small $(\delta<\delta(\varepsilon))$. We choose X_{0}, Y_{0}, Z_{0} in such a way that

$$
\begin{aligned}
& a_{x} X_{0}+a_{2} Z_{0}=0 \\
& \left|a_{0} Y_{0}\right|^{-1}\left(a_{\mathbf{x}} Z_{0}-a_{x} X_{0}\right)=1 / 2+\varepsilon
\end{aligned}
$$

It can be assumed without loss of generality that $a_{0} Y_{0}=-1$.
Let $\alpha=(1-2 \varepsilon) /(1+2 \varepsilon)$. The quantity $J+O(\mu)$ can be equal to zero, provided that $\sin \psi_{1}$ and $\sin \psi_{3}$ exceed $\alpha+O(\delta)+O(\mu)$, i.e., that ψ_{1}, ψ_{3} lie in the intervals $(2 \pi m+\Phi$, $2 \pi m+\pi-\Phi)$ where $\Phi=\arcsin \alpha+\bar{O}(\delta)+O(\mu)$. In this case

$$
-\left(J_{1}\left(\psi_{1}\right)+J_{2}\left(\psi_{2}\right)\right)>1 / 2-\varepsilon+O(\delta)+O(\mu)
$$

By (4.1) and (4.3),

$$
\psi_{3}-\psi_{1}=-2 t-2 \Lambda^{-1} \ln 1 / 2+O(\varepsilon)+O(\delta)+O(\mu \ln \mu)
$$

On the other hand, the difference $\psi_{3}-\psi_{1}$ must lie in one of the intervals ($2 \pi m+2 \Phi-$ $\pi, 2 \pi m+\pi-2 \mathscr{\Phi})$. If ε is small $(\varepsilon<\varepsilon(\Lambda), \delta<\delta(\varepsilon), \mu<\mu(p r))$, this condition must be violated in a sequence $t_{n} \rightarrow-\infty, n \rightarrow \infty$, to which corresponds the sequence $\mu_{n}{ }^{+}$.

The sequence μ_{n} - will correspond to the t which satisfy the condition

$$
2 t+\Lambda^{-1} \ln \left(1 / 4-\varepsilon^{2}\right)=0 \bmod 2 \pi
$$

For, in this case, with $\sin \psi_{1}=1$ we have

$$
\begin{aligned}
& \psi_{3}=\psi_{1}+O(\delta)+O(\mu \ln \mu) \bmod 2 \pi \\
& J+O(\mu)=-2 \varepsilon+O(\delta)+O(\mu)
\end{aligned}
$$

This last expression is negative if $\delta<\delta(\varepsilon)$ and $\mu<\mu(p r)$. Then, the separatrices Γ_{1} and Γ_{2} intersect close to $x_{3}{ }^{*}$, and hence, close to $x_{1}{ }^{*}, x_{2}{ }^{*}$. Thus there exists pr $\in S_{3}$.

Notice in conclusion that all the points in the problem parameter space, close to those chosen in the proof, likewise have the necessary property. Hence we can choose entire domains as the sets S_{i}.

The author thanks V.V. Kozlov for his attention and support, and S.L. Ziglin for his interest.

REFERENCES

1. ZIGLIN S.L., Splitting of separatrices, branching of solutions, and the non-existence of an integral in rigid body dynamics, Tr. Mosk. mat. o-va, 41, 1980.
2. KOZLOV V.V., Splitting of separatrices of the perturbed Euler-Poinsot problem, Vestn. MGU, Ser. 1, Matematika, Mekhanika, 6, 1976.
